Contents lists available at ScienceDirect

Journal of Solid State Chemistry

journal homepage: www.elsevier.com/locate/jssc

Metallic Re–Re bond formation in different MRe_2O_6 (M=Fe, Co, Ni) rutile-like polymorphs: The role of temperature in high-pressure synthesis

D. Mikhailova^{a,b,*}, H. Ehrenberg^b, S. Oswald^b, D. Trots^c, G. Brey^d, H. Fuess^a

^a Institute for Materials Science, Darmstadt University for Technology, D-64287 Darmstadt, Germany

^b Institute for Complex Materials, IFW Dresden, P. O. BOX 270116, D-01171, Dresden, Germany

^c Hamburger Synchrotronstrahlungslabor, Notkestr. 85, D-22603 Hamburg, Germany

^d Institute for Geosciences, Johann Wolfgang Goethe-University Frankfurt am Main, Altenhöferallee 1, D-60438 Frankfurt am Main, Germany

ARTICLE INFO

Article history: Received 22 August 2008 Received in revised form 21 October 2008 Accepted 3 November 2008 Available online 13 November 2008

Keywords: 3d-metal rhenium oxide MRe₂O₆ Rutile-like structure Polymorphism High-pressure synthesis Re-Re bond Magnetism XPS spectra

ABSTRACT

Different polymorphs of MRe_2O_6 (M=Fe, Co, Ni) with rutile-like structures were prepared using highpressure high-temperature synthesis. For syntheses temperatures higher than ~1573 K, tetragonal rutile-type structures ($P4_2/mnm$) with a statistical distribution of M- and Re-atoms on the metal position in the structure were observed for all three compounds, whereas rutile-like structures with orthorhombic or monoclinic symmetry, partially ordered M- and Re-ions on different sites and metallic Re-Re-bonds within Re₂O₁₀-pairs were found for CoRe₂O₆ and NiRe₂O₆ at a synthesis temperature of 1473 K. According to the XPS measurements, a mixture of Re⁺⁴/Re⁺⁶ and M^{2+}/M^{3+} is present in both structural modifications of CoRe₂O₆ and NiRe₂O₆. The low-temperature forms contain more Re⁺⁴ and M^{3+} than the high-temperature forms. Tetragonal and monoclinic modifications of NiRe₂O₆ order with a ferromagnetic component at ~24 K, whereas tetragonal and orthorhombic CoRe₂O₆ show two magnetic transitions: below ~17.5 and 27 K for the tetragonal and below 18 and 67 K for the orthorhombic phase. Tetragonal FeRe₂O₆ is antiferromagnetic below 123 K.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Phase relationships and crystal structures of existing compounds in the system Mo–Re–O [1,2] and V–Re–O [3] were intensively investigated due to their potential catalytical activity. In the quasibinary ReO₂–MoO₂-system a Mo_xRe_{1–x}O₂ solid solution with the orthorhombic ReO₂-structure and metallic M–M-bond is stable for $0 \le x \le 0.35$ at 1173–1473 K, whereas a two-phase region consisting of orthorhombic Mo_xRe_{1–x}O₂ and monoclinic MoO₂ was found for $0.35 < x \le 1$ [1]. For V_xRe_{1–x}O₂, the monoclinic MoO₂-type structure was registered for $x \ge 0.98$ and the rutile structure was detected for $0.98 < x \le 0.85$ [3]. The increasing Re-content in the phase decreases linearly the insulator–metal transition temperature and at the same time increases the molar magnetic susceptibility. The rutile structure was also stabilized for V_{0.5}Re_{0.5}O₂ by high-pressure high-temperature (HPHT) synthesis [4].

* Corresponding author at: Institute for Materials Science, Darmstadt University for Technology, D-64287 Darmstadt, Germany. Tel.: +496151162894; fax: +496151166023.

The study of $M_x \text{Re}_{1-x} O_2$ for *M*-3*d* transition metals is limited to only a few works [5-8]. The best known compounds crystallize either in the rutile-structure with a random distribution of cations or rutile-like structures with or without cation ordering. MnReO4 (Mn_{0.5}Re_{0.5}O₂) [5,7] and ZnReO₄ (Zn_{0.5}Re_{0.5}O₂) [5] adopt a wolframite-type structure without any metallic bond. Sc³⁺ demonstrates similarity with heavy rare earth elements in Re-containing compounds forming Sc₆ReO₁₂ with fluorite-like structure [9], and with 3*d*-elements forming $ScRe_2O_6$ with a new rutile-derivated monoclinic structure containing Re₂O₁₀-units with Re–Re bonds [8]. Compounds $MReO_4$ for M = Fe, Co, Ni were obtained for the first time by Sleight [5] using HPHT. FeReO₄ crystallizes in the tetragonal rutile-structure with a random cation occupation, whereas an increasing Fe-content in the compound causes an ordering of the cations resulting in the formation of a superstructure: a tri- α -PbO₂-type was proposed for Fe₂ReO₆. For CoReO₄ a new rutile-derivated type with an ordering of two cations was postulated [6], the structure of NiReO₄ is not solved yet [5]. Despite the lack of physical properties investigations of rutile-like Re- and 3d-containing complex oxides some of them seem to demonstrate metallic type of conductivity due to the delocalization of d electrons of Re-cations on Re-O-Re-O and Re-Re-Re linkages. For example, the decreasing of electrical resistivity on cooling was measured for FeReO₄, MnReO₄ [5] and

E-mail address: d.mikhailova@ifw-dresden.de (D. Mikhailova).

^{0022-4596/\$ -} see front matter \circledcirc 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2008.11.001

ScRe₂O₆ [8]. At the same time, there are strong magnetic interactions in 3d/Re-containing oxides leading to a high temperature of magnetic ordering: T_N of 210 K for FeReO₄ [5], T_N of 275 K and T_c of 225 K for MnReO₄ [7], and T_c above room temperature was measured for ScRe₂O₆ [8]. In the latter case only Re-ions (and itinerant electrons) are contributing to the magnetic moments.

The preparation by HPHT syntheses, crystal structures and magnetic properties of $FeRe_2O_6$, $CoRe_2O_6$ and $NiRe_2O_6$ are reported. $FeRe_2O_6$ crystallizes in the tetragonal rutile-type with Fe and Re sharing one crystallographic site. Two more polymorphs have been observed for each of the other compounds $CoRe_2O_6$ and $NiRe_2O_6$, controlled by the temperature of synthesis.

2. Experimental

Synthesis: A high-pressure high-temperature (HPHT) synthesis of MRe_2O_6 (M=Fe, Co, Ni) was performed in a Girdle-Belt apparatus with pyrophyllite as the pressure-transmitting medium. A graphite furnace with a platinum capsule inside containing the reactants was used for the experiment. Mixtures of MO (Alfa Aesar, 99.99%), ReO₃ (Strem Chemicals, 99.9%) and Re (Strem Chemicals, 99.99%) were ground in an agate mortar under acetone and filled in a platinum capsule. The sample holder was pressed up to 5 GPa before the temperature was raised to 1473 or 1573 K with a rate of 50 K/min. The heating current was switched off after 120 min, and after cooling to room temperature, pressure was released.

X-ray powder diffraction (XRD): Phase analysis and determination of cell parameters at room temperature were carried out using X-ray powder diffraction with a STOE STADI P diffractometer (Mo-K α_1 -radiation, $\lambda = 0.7093$ Å) in steps of 0.02° for 2 Theta from 3° to 45° in transmission mode for flat samples.

Crystal structure determination: The crystal structures of MRe_2O_6 , M=Fe, Co, Ni, were solved by single-crystal X-ray diffraction using the Xcalibur system from Oxford Diffraction. The software packages SHELXS [10] and SHELXL [11] were used for structure solution and refinement as included in X-STEP32 [12].

High-temperature structure investigations: High-temperature structure investigations in the temperature range of 295-1173 K on MRe_2O_6 powders have been performed by synchrotron diffraction at beamline B2 [13] of the Hamburger Synchrotron-strahlungslabor at DESY (Hamburg, Germany) with the on-site readable image-plate detector OBI [14] and a STOE furnace, equipped with a EUROTHERM temperature controller and a capillary spinner. The wavelength of 0.49962(1) Å was determined from the positions of 8 reflections from a LaB₆ reference material. After heating up to 1173 K and subsequent cooling, the MRe_2O_6 samples were analyzed at room temperature again to check the reversibility of temperature induced changes. All diffraction patterns have been analyzed by using the software package WinPLOTR [15]. Only isotropic thermal displacement parameters have been refined by the Rietveld method.

Thermoanalysis: A simultaneous thermal analyzer NETZSCH STA 429 (CD) operated with dry and purified Ar was used to

register mass loss and thermal flux curves. About 30 mg of MRe_2O_6 were heated in an Al_2O_3 -crucible in Ar-atmosphere with a rate of 5°/min from 20 up to 1150 °C.

X-ray photoelectron spectroscopy (XPS) measurements: The X-ray photoelectron spectroscopic measurements were carried out at a PHI 5600 CI system using an Al K α 350 W monochromatized X-ray source and a hemispherical analyzer at a pass energy of 29 eV. When necessary, surface charging was minimized by means of a low-energy electron flood gun. The system base pressure was about 10⁻⁹ mbar. ReO₃ (Strem Chemicals, 99.9%), Co₃O₄ (Alfa Aesar, 99.99%) and NiO (Alfa Aesar, 99.99%) powders were used as reference materials for the estimation of the valence states of Co, Ni and Re ions in the ternary phases. The binding energy scale was calibrated from the carbon contamination using the C 1s peak at 285.0 eV.

Magnetization measurements: The magnetic properties of MRe_2O_6 (M—Fe, Co, Ni) have been studied with a superconducting quantum interference device (SQUID) from Quantum Design. Measurements were performed upon heating in field-cooled (FC) and zero-field cooled (ZFC) mode in the temperature range from 1.7 to 350 K and with applied field strengths up to 6.5 T.

3. Results and discussion

3.1. Synthesis and sample characterisation

Depending on the synthesis temperature different structural modifications were obtained for NiRe₂O₆ and CoRe₂O₆ at the constant external pressure: phases with the tetragonal rutile-structure are formed at 1573 K, whereas monoclinic rutile-derivated structures were obtained from synthesis at 1473 K ("low-temperature modifications"). FeRe₂O₆ was prepared at 1573 K only. Diffraction patterns of low-temperature modifications were similar to the one of high-pressure form of VO₂ [16]. The conditions of synthesis and the lattice parameters are listed in Table 1. XRD patterns of CoRe₂O₆ and NiRe₂O₆ are presented in Fig. 1.

According to thermoanalyses mass losses were observed for tetragonal $CoRe_2O_6$ and $NiRe_2O_6$ in Ar-atmosphere above 1153 K, and CoO or NiO and Re(met.) were found as decomposition products after the high-temperature treatment during thermoanalyses.

3.2. Crystal structure

3.2.1. High-temperature modifications

According to single crystal structural data all high-temperature modifications of FeRe₂O₆, CoRe₂O₆ and NiRe₂O₆ crystallize in a tetragonal rutile-type structure (S.G. $P4_2/mnm$) with a random distribution of cations on the 2*a*-sites and without any metalmetal bonding (Table 2). Atomic positions and selected interatomic distances are presented in Table 3 and 4. The average (*M*,Re)–O–distance is nearly the same for all three compounds

Table 1

Synthesis conditions and lattice parameters of MRe_2O_6 (M=Fe, Co, Ni), calculated from powder diffraction data.

Compound	Synthesis conditions	Symmetry	Lattice parameters
$\begin{tabular}{l} FeRe_2O_6\\ CoRe_2O_6\\ CoRe_2O_6\\ NiRe_2O_6\\ NiRe_2O_6\\ \end{tabular}$	5 GPa, 1573 K 5 GPa, 1573 K 5 GPa, 1473 K 5 GPa, 1573 K 5 GPa, 1473 K	Tetragonal Tetragonal Monoclinic Tetragonal Monoclinic	$\begin{array}{l} a=4.73954(8) {\rm \AA}, c=2.85881(5) {\rm \AA}, Z=2\\ a=4.7414(1) {\rm \AA}, c=2.84731(9) {\rm \AA}, Z=2\\ a=9.4176(2) {\rm \AA}, b=5.7161(1) {\rm \AA}, c=4.73808(9) {\rm \AA}, \beta=91.388(1)^\circ, Z=8\\ a=4.7313(1) {\rm \AA}, c=2.84552(8) {\rm \AA}, Z=2\\ a=9.3672(1) {\rm \AA}, b=5.72651(7) {\rm \AA}, c=4.72076(6) {\rm \AA}, \beta=91.7050(8)^\circ, Z=8\\ \end{array}$

Fig. 1. (a) X-ray diffraction pattern of tetragonal FeRe₂O₆ (S.G. *P*₄₂/*mnm*), observed and calculated profiles together with their difference curve. (b, c, d) X-ray diffraction patterns of the low-temperature modifications of CoRe₂O₆ and NiRe₂O₆. For CoRe₂O₆, two structural models using *F*222 (b) and *C*2/*m* (c) space groups were refined based on the same data set (see text). The NiRe₂O₆ structure was refined in space group *C*2/*m*.

(1.98 Å). The tetragonal distortion of (*M*,Re)O₆-octahedra, calculated as the ratio $\zeta = d(M,\text{Re-O})_{\text{equatorial}(4 \text{ times})}/d(M,\text{Re-O})_{\text{apical}(2 \text{ times})}$ between averaged bond lengths in the equatorial plane and to apical oxygens, respectively, has the lowest value for NiRe₂O₆ ($\zeta = 1.008$) and the highest one for CoRe₂O₆ ($\zeta = 1.048$). Note that for TiO₆-octahedra in rutile TiO₂ a value $\zeta = 0.9827 < 1$ is calculated [17].

Sleight [5] has reported a tetragonal rutile-type modification (S.G. $P4_2/mnm$) in the system Fe–Re–O with the composition FeReO₄. The lattice parameters were: a = 4.663 Å, c = 2.927 Å. This means together with our results for FeRe₂O₆ the existence of a Fe_xRe_{1-x}O₂ solid solution for compositions at least within $0.33 \le x \le 0.50$. The "*a*" parameter of the unit cell becomes larger with increasing Re content in Fe_xRe_{1-x}O₂, whereas "*c*" decreases. The same effect was also found for Cr_xRe_{1-x}O₂ [18] and Cr_xMo_{1-x}O₂ [19] solid solutions.

In contrast to $Fe_xRe_{1-x}O_2$ no tetragonal solid solutions are found in the composition range $0.33 \le x \le 0.50$ for $Co_xRe_{1-x}O_2$ and $Ni_xRe_{1-x}O_2$. The composition $CoReO_4$ [6] adopts a rutile-like orthorhombic structure with an ordering of Co and Re on two distinct crystallographic sites and without Re–Re-bonds. Interatomic metal–oxygen distances Co–O and Re–O suppose rather the assignment of Co^{+3} and Re^{+5} than Co^{+2} and Re^{+6} [6]. NiReO₄, as reported in [5], adopts also a rutile-derivated structure, but no structural parameters were provided.

3.2.2. Low-temperature modifications

Low-temperature modifications of NiRe₂O₆ and CoRe₂O₆ crystallize in rutile-like structures with a partial ordering of cations. NiRe₂O₆ (Fig. 2, Table 1) adopts monoclinic symmetry, S.G. C2/m, as other oxides with similar structures, for example, CrWO₄ [20] and the high-pressure modification of VO₂ [16]. In this structure type two crystallographically non-equivalent $[(Ni,Re)O_4]_n$ and $[ReO_4]_n$ strings of edge-sharing ReO₆ and (Ni,Re)O₆ octahedra exist. The specific cation distribution on the metal sites is different in the structures of NiRe₂O₆ and CrWO₄: in NiRe₂O₆ the 4g site is exclusively occupied by Re atoms and the 4isite is occupied by Re and Ni, whereas in the CrWO₄ structure cation positions are completely ordered: Cr ions on the 4i and W ions on the 4g site. In both structures M₂O₁₀ units with metallic M-M bonds exist between 5d cations (Fig. 3(b)). The Re-Re distance in the Re₂O₁₀-units is 2.611(2)Å and lower than in metallic Re (2.74 Å). The average Re-O distance is 1.95 Å and the

D. Mikhailova et al. / Journal of Solid State Chemistry 182 (2009) 364-373

Table 2

Details of X-ray single-crystal data collection and structure refinement of polymorph modifications of MRe₂O₆ (M=Fe, Co, Ni).

Crystal data Chemical formula Formula weight Crystal system Space group Unit cell dimensions (Å and °)	$Fe_{1/3}Re_{2/3}O_2$ 174.75 Tetragonal $P4_2/mnm$ a = 4.741(4) c = 2.865(7)	$Co_{1/3}Re_{2/3}O_2$ 175.78 Tetragonal $P4_2/mnm$ a = 4.728(1) c = 2.847(1)	$Co_{1/3}Re_{2/3}O_2$ 175.78 Orthorhombic F222 a = 13.531(3) b = 13.192(2) c = 5.7221(9)	Ni _{1/3} Re _{2/3} O ₂ 175.70 Tetragonal $P4_2/mnm$ a = 4.733(4) c = 2.845(3)	Ni _{1/3} Re _{2/3} O ₂ 175.70 Monoclinic C2/m a = 9.374(4) b = 5.7225(14) c = 4.7183(14) $\beta = 91.72(3)$
Cell volume (Å ³) Z Calculated density (g/cm ³)	64.40(18) 2 9.014	63.64(4) 2 9.173	1021.4(3) 32 9.145	63.73(10) 2 9.156	252.99(15) 8 9.226
Radiation type Temperature Crystal form, color Crystal size (mm)	Mo-K α ($\lambda = 0.71073$ Å) 299(2) Prism, black 0.010 × 0.025 × 0.040	299(2) Prism, black 0.030 × 0.025 × 0.020	299(2) Prism, black 0.06 × 0.04 × 0.03	299(2) Prism, black 0.020 × 0.015 × 0.015	299(2) Prism, black 0.025 × 0.025 × 0.015
Data collection Diffractometer Data collection method	Oxford Diffraction Xcalibu	ur (TM); single-crystal X-ra	y diffractometer with sappl	hire CCD detector	
Absorption coefficient (mm^{-1}) F(000) Theta range for data collection Range of h, k, l	69.75 224 6.08-27.38 $-5 \le h \le 6,$ $-5 \le k \le 5,$ $-2 \le l \le 3$	71.20 134 6.10-27.22 $-3 \le h \le 5$, $-5 \le k \le 6$, $-2 \le l \le 3$	70.98 2144 3.01-27.92° $-16 \le h \le 17,$ $-13 \le k \le 16,$ $-7 \le l \le 7$	71.50 135 6.10-30.72 $-6 \le h \le 5$, $-5 \le k \le 6$, $-4 \le l \le 4$	71.93 587 4.17-28.27 $-12 \le h \le 11$, $-7 \le k \le 7$, $-6 \le l \le 6$
Reflections collected/unique Completeness to Theta = 26.35°	227/52 [<i>R</i> (int) = 0.0908] 98.1% (Theta = 27.38°)	174/51 [<i>R</i> (int) = 0.0644] 98.1%	2168/560 [<i>R</i> (int) = 0.0974] 99.7%	178/62 [<i>R</i> (int) = 0.0313] 92.5% (Theta = 30.72°)	992/312 [<i>R</i> (int) = 0.0354] 97.2%
Refinement method Data/restraints/parameters Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data)	Full-matrix least-squares 52/0/9 1.262 $R_1 = 0.0406$, $wR_2 = 0.0999$ $R_1 = 0.0448$,	on F^2 51/0/9 1.269 $R_1 = 0.0369,$ $wR_2 = 0.0808$ $R_1 = 0.0491,$	560/0/39 1.208 $R_1 = 0.0696$, $wR_2 = 0.2402$ $R_1 = 0.0782$,	$62/0/9$ 1.282 $R_1 = 0.0213,$ $wR_2 = 0.0450$ $R_1 = 0.0329,$	312/0 /23 1.198 $R_1 = 0.0388$, $wR_2 = 0.0952$ $R_1 = 0.0432$,
Extinction coefficient Largest diff. peak and hole	wR ₂ = 0.1015 0.46(11) 1.823 and -2.158 e/Å ³	wR ₂ = 0.0856 0.06(3) 1.623 and -1.382 e/Å ³	wR ₂ = 0.2538 0.0017(3) 4.846 and -3.674 e/Å ³	wR ₂ = 0.0477 0.006(5) 0.999 and -1.192 e/Å ³	wR ₂ = 0.0977 0.0021(5) 2.974 and -3.576 e/Å ³

average mixed (Re,Ni)-O distance 2.00 Å, which is somewhat shorter than in rhombohedral NiO with Ni²⁺ at room temperature [21]. All peaks on the powder diffraction pattern of the lowtemperature NiRe₂O₆ are well described by this structure model (Fig. 1(d)). In contrast to the Ni-containing phase all investigated four single crystals of CoRe₂O₆ adopt orthorhombic symmetry (S.G. F222) with a larger unit cell, unambiguously revealed based on additional superstructure reflections. The same superstructure cell was also observed for another polymorph of CrWO₄ [22] (Fig. 3(a), Tables 1-3), but with a slightly different cation distribution: whereas W and Cr ions show a high degree of order on different sites (W atoms occupy 4a, 4b and 8h sites, Cr atoms 8i and 8*i*), the distribution of Co and Re is disordered (Table 2). The Re-Re bonds (2.539 Å) are due to Re-ions on the 8h-site as the W-W-bonds in orthorhombic CrWO₄. The Re-Re distance in the low temperature polymorph is shorter for the Co- than for the Ni-compound, indicating that more electrons of Re, which are not involved in Re-O bonds, participate in the metallic Re-Re bonds. The orthorhombic unit cell of CoRe₂O₆ can be described as a superstructure of four monoclinic cells of NiRe₂O₆, in which each second $[ReO_4]_n$ chain of edge sharing ReO_6 octahedra is broken by $(Co,Re)O_6$ octahedra, so that a sequence of octahedra [ReO₆]-[(Co,Re)O₆]-[ReO₆]-... appears instead of [ReO₆]-[ReO₆]-[ReO₆]-.... Accordingly, both the monoclinic and the orthorhombic structure type are characterised by the formation of metallic Re-Re bonds in contrast to the high-temperature form. The monoclinic form is very sensitive to antiphase boundaries, where 3*d*-metal and Re-ions interchange site occupations, and the orthorhombic superstructure can be described as an ordered sequence of such antiphase boundaries. Therefore, several intermediate distributions of local Re-Re pairs are possible by some partial disorder in the specific site occupations, and the two polymorphs are just representing two different arrangements with a pronounced long-range order. Nevertheless, a high degree of residual disorder is reflected for both polymorphs by the mixed occupied sites. The formation of metallic Re-Re bonds seems to introduce a monoclinic distortion, which can be overcome by partial order in an orthorhombic superstructure as observed for all large single crystals. Note that the powder diffraction pattern of low-temperature CoRe₂O₆ cannot be satisfactorily explained based on the F222 space group (Fig. 1(d)), but only in C2/m, isotypic with NiRe₂O₆. For example, the (480) reflection at 27.68° in the F222 model (inset in the Fig. 1(b)) is clearly split into at least two reflections, well explained in the C2/m model (inset in Fig. 1(c)). However, no monoclinic $CoRe_2O_6$ crystal with this structure model could be isolated for single crystal X-ray diffraction and are therefore probably limited to small domains, while large X-ray coherent crystals are only observed for a partially ordered superstructure.

The analysis of average interatomic (Re,M)–O distances in the low-temperature forms (for example, 1.93 and 2.01 Å for $CoRe_2O_6$) provide some information about the oxidation states of Co and Re:

Table 3

Table 5					
Atomic coordinates and a	inisotropic thermal	displacement	parameters (Å	2 , $\times 10^{3}$)	for MRe ₂ O ₆ .

Compound	S.G.	Atoms	Wyckoff site	x	у	Ζ	Occupancy	U11	U22	U33	U23	U13	U12
FeRe ₂ O ₆	P4 ₂ /mnm	Fe Re O	2a 2a 4f	0 0 0.2931(15)	0 0 0.2931(15)	0 0 0	0.33 0.67 1	7(1) 7(1) 15(6)	7(1) 7(1) 15(6)	31(2) 31(2) 19(5)	0 0 0	0 0 0	3(1) 3(1) 7(4)
CoRe ₂ O ₆	P4 ₂ /mnm	Co Re O	2a 2a 4f	0 0 0.2870(30)	0 0 0.2870(30)	0 0 0	0.33 0.67 1	6(2) 6(2) 14(7)	6(2) 6(2) 14(7)	22(2) 22(2) 19(10)	0 0 0	0 0 0	6(1) 6(1) -1(10)
CoRe ₂ O ₆	F222	$\begin{array}{c} \text{Re}(1) \\ \text{Re}(2) \\ \text{Re}(3) \\ \text{Co}(3) \\ \text{Re}(4) \\ \text{Co}(4) \\ \text{Re}(5) \\ \text{Co}(5) \\ \text{O}(1) \\ \text{O}(2) \\ \text{O}(3) \\ \text{O}(4) \\ \text{O}(5) \\ \text{O}(6) \end{array}$	4a 8h 4b 8i 8j 8j 16k 16k 8f 8f 8f 8j	0 0.25 0 0.25 0.25 0.0082(2) 0.0082(2) 0.1013(15) 0.250(2) 0 0 0.155(2) -0.137(2)	0 0.25 0 0.0044(2) 0.25 0.25 0.0029(13) 0.1069(18) 0.143(2) 0.361(3) 0.25 0.25	$\begin{matrix} 0 \\ -0.0281(3) \\ 0.5 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.251(7) \\ -0.008(4) \\ 0 \\ 0 \\ 0.25 \\ 0.25 \\ 0.25 \end{matrix}$	$1 \\ 1 \\ 0.68(2) \\ 0.32(2) \\ 0.46(2) \\ 0.54(2) \\ 0.40(2) \\ 0.60(2) \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	20(2) 13(1) 1(2) 32(2) 32(2) 12(2) 12(2) 24(4) 33(5) 19(8) 40(11) 24(5) 26(6)	$\begin{array}{c} 19(2) \\ 16(1) \\ 5(2) \\ 5(2) \\ 17(2) \\ 17(2) \\ 16(2) \\ 16(2) \end{array}$	53(6) 10(1) 17(3) 17(3) 28(2) 28(2) 22(2) 22(2)	0 0 0 0 15(3) 15(3)	0 0 23(3) 23(3) 0 0	0 -6(1) 0 0 0 0 0 0 0
NiRe ₂ O ₆	P4 ₂ /mnm	Ni Re O	2a 2a 4f	0 0 0.2938(17)	0 0 0.2938(17)	0 0 0	0.33 0.67 1	11(1) 11(1) 13(3)	11(1) 11(1) 13(3)	22(1) 22(1) 12(5)	0 0 0	0 0 0	6(1) 6(1) 4(4)
NiRe ₂ O ₆	C2/m	Ni(1) Re(1) Re(2) O(1) O(2) O(3)	4i 4i 4g 8j 4i 4i	0.2599(2) 0.2599(2) 0 0.1437(12) 0.1099(17) 0.4066(17)	0 0 0.7719(2) 0.2420(18) 0 0	0.4928(3) 0.4928(3) 0 0.291(2) 0.790(3) 0.188(3)	0.68(2) 0.32(2) 1 1 1 1 1	5(1) 5(1) 7(1) 9(2) 8(3) 8(3)	8(1) 8(1) 10(1)	4(1) 4(1) 6(1)	0 0 0	0(1) 0(1) 4(1)	0 0 0

For oxygen atoms in monoclinic NiRe₂O₆ and orthorhombic CoRe₂O₆ equivalent isotropic displacement parameters ($\mathring{A}^2 \times 10^3$) were refined.

Table 4

Selected interatomic distances (Å) for the different polymorphs of MRe₂O₆.

Distances (Å) and angles (°)	FeRe ₂ O ₆	CoRe ₂ O ₆ (F222)	CoRe ₂ O ₆ (P4 ₂ /mnm)	$NiRe_2O_6(C2/m)$	NiRe ₂ O ₆ (P4 ₂ /mnm)
Re(1)/M(1)-O(1)	1.965(10) (× 2)		1.92(2) (× 2)	1.99(1) (× 2)	1.967(11) (× 2)
Re(1)/M(1)-O(1)	1.994(7) (× 4)		2.01(2) (× 4)	2.00(1) (× 2)	1.982(8) (× 4)
M(Re)-M(Re)	2.865(7)		2.847(1)		2.845(3)
Re(1)-O(1)		1.99(3) (× 4)			
Re(1)-O(3)		1.89(3) (× 2)			
Re(1)-Re(3)		2.8610(5)			
Re(2)-O(2)		1.89(2) (× 2)		1.95(1) (× 2)	
Re(2)-O(6)		1.98(2) (× 2)			
Re(2)-O(5)		2.04(2) (× 2)			
Re(2)-Re(2)		2.539(4)		2.611(2)	
Re,Co(3)–O(4)		1.84(4) (× 2)			
Re,Co(3)–O(1)		1.98(3) (× 4)			
Re,Co(4)-O(1)		2.01(2) (× 2)			
Re,Co(4)-O(2)		2.00(2) (× 2)			
Re,Co(4)-O(2)		2.02(2) (× 2)			
Re,Co(5)–O(3)		2.01(2) (× 2)			
Re,Co(5)–O(4)		2.05(3) (× 2)			
Re,Co(5)–O(5)		1.97(3)			
Re,Co(5)–O(4)		1.99(3)			
Re,Ni(1)-O(2)				2.02(2)	
Re,Ni(1)–O(3)				2.02(2)	
Re(2)-O(1)				1.90(1) (× 2)	
Re(2)-O(3)				2.01(1) (× 2)	

The Co–O distance of 1.93 Å is too low for Co²⁺ (0.75 Å, high-spin) and O²⁻ (1.40 Å) and corresponds rather to the sum of ionic radii for Co³⁺ (0.55 Å, low-spin state) or Co³⁺ (0.61 Å, high-spin) and O²⁻. The Re–O distance of 1.93 Å indicates Re⁵⁺ or Re⁶⁺, whereas

2.01 Å would be expected for Re^{4+} –O. A similar assignment holds for NiRe₂O₆.

High-temperature structural investigations did not show any phase transitions below the phase decomposition temperatures.

Fig. 2. Projection of monoclinic NiRe₂O₆ (C2/*m*) structure along [0–10]. Small white spheres are O^{2-} ions, large dark gray ones are Re ions (4*g*). In gray octahedra Re and Ni ions (4*i*) are statistically distributed.

Fig. 3. (a) Projection of the orthorhombic $CoRe_2O_6$ (*F*222) structure along [001]. Small white spheres are O^{2-} ions, large dark gray ones are Re ions. gray octahedra are statistically occupied by Re and Co ions. (b) [ReO₄]_n chains built up from ReO₆ edge-shared octahedra in the low-temperature modifications of $CoRe_2O_6$ and NiRe₂O₆. Re–Re bonds are represented by the thick black lines.

The average expansion coefficients along the "*c*" axes α_c for the tetragonal modifications of MRe_2O_6 are more than five times higher than those along the "*a*" axes α_a , for example $\alpha_c(NiRe_2O_6) = 1.31 \times 10^{-5} 1/K$, $\alpha_a(NiRe_2O_6) = 2.53 \times 10^{-6} 1/K$, or $\alpha_c(FeRe_2O_6) = 1.68 \times 10^{-5} 1/K$, $\alpha_a(FeRe_2O_6) = 6.44 \times 10^{-7} 1/K$. The thermal expansion of the low-temperature forms calculated for the same structural fragment as for the tetragonal ones is in the same order: $\alpha_{"c"}(CoRe_2O_6) = 1.34 \times 10^{-5} 1/K$, $\alpha_{"a"}(CoRe_2O_6) = 3.05 \times 10^{-6} 1/K$.

3.3. XPS measurements

The Re4 $f_{7/2}$ and Re4 $f_{5/2}$ XPS spectra of the orthorhombic, monoclinic and tetragonal modifications of MRe_2O_6 together with ReO₃ as a reference material are presented in Fig. 4. All spectra were calibrated with respect to the C1s peak. XPS spectra of Fe, Co and Ni are not shown, but have also been measured. It is known that the positions of the main Co2p photoemission peaks in

ternary oxides do not change with an increase of the average oxidation state of Co from +2 to +3 or +4 as long as the oxygen coordination remains the same, while the position and the intensity of the satellite peaks dependent significantly on the metal oxidation state, see for example [23]. In our spectra there is a systematic shift of the Co2p and Ni2p cores towards higher binding energies, maybe as a result of a high positive charge of the sample due to photoelectron emission, so that the determination of the positions of the satellites is not very reliable. It should be noted here explicitly that XPS represents the electronic structure of the surface region, influenced by contaminations or surface effects. For the bulk material the $\text{Re4}f_{7/2}$ core peak is more representative, because the kinetic energies of the detected and analyzed photoelectrons are about 700 eV for Co2p and 1440 eV for $\text{Re4}f_{7/2}$, allowing a photoelectron escape from about 1.5 times deeper regions for $\text{Re4}f_{7/2}$ than for Co2p and Ni2p. The shifts in binding energies between $\text{Re4}f_{7/2}$ and $\text{Re4}f_{5/2}$ peaks of Re^{+4} in ReO_2 and Re^{+6} in ReO_3 are significant [24]. The authors of [25] have established an exponential dependence of the binding energy on the oxidation state of Re in the compounds NH₄ReO₄, Re₂O₇, ReO₃, ReO₂ and metallic Re without consideration of the underlying structures. However, the difference in the positions of the Re4 $f_{7/2}$ peaks for Re⁺⁷ in NH₄ReO₄ and Re₂O₇ points out an influence of the structural features on the XPS spectra: in ammonium perrhenate only corner-sharing ReO4-tetrahedra exist, in contrast to both corner-sharing ReO₄-tetrahedra and ReO₆-octahedra in Re₂O₇. Our measurements on ReO₃ (Fig. 4a) reveal the $\text{Re4}f_{7/2}$ peak of ReO_2 at 43.6 eV, which indicates the presence of Re^{+4} due to a partial reduction in the surface-near region. The broadening of Re peaks in MRe₂O₆ can also reflect Re in different oxidation states within one phase, but is also typically observed for strong-correlated electron systems. Each Re4f spectrum of MRe_2O_6 (M=Co, Ni) contains three peaks (Fig. 4c and a) which can be represented as a combination of Re^{+4} and Re^{+6} , although " Re^{+6} "-peaks are shifted to higher energies and "Re⁺⁴"-peaks to lower energies. The relative area of the Re⁺⁴ peak is higher for the low-temperature modifications of the Co- and Ni-compound, while the area below the satellite peak of Re⁺⁶ is higher for the tetragonal modifications. This means, taking charge balance into account, the presence of higher concentrations of Co³⁺ and Ni³⁺ in the low-temperature modifications than in the tetragonal high-temperature forms¹. The Re4f spectrum of FeRe₂O₆ (Fig. 4e) is more complex and exhibits an additional peak at 41.0 eV, which might indicate the presence of some metallic Re, although not observed in XRD.

From the XPS valence spectra of MRe_2O_6 (M = Fe, Co, Ni) one can expect a metallic behavior (Fig. 4f, d, b) of these compounds. The density of states at $E_{\rm F}$ is a little higher for orthorhombic CoRe₂O₆ than for tetragonal CoRe₂O₆ and significantly higher for monoclinic NiRe₂O₆ compared with tetragonal NiRe₂O₆. It correlates with the relative amount of Re ions in metallic Re-Re bonds: in the orthorhombic modification of CoRe₂O₆ only 37% of all Re atoms form metallic Re-Re bonds in contrast to 75% in the monoclinic form of NiRe₂O₆. The shape of MRe_2O_6 (M=Fe, Co, Ni) valence peaks is quite different from that of ReO₃ (Fig. 4f, d, b). According to a simplified model of the ReO₃ band structure without covalence contributions and based on a formal separation of the total electronic structure into an O2p and a Re5d band, the peak with \sim 2 eV-width just below the Fermi energy is interpreted as the Re5*d*-derived conduction band, and the major part of the p-band signal (between 3 and 10 eV) is also due to the Re-d

¹ Note that all experiments were performed at room temperature. "Low-temperature modification" and "high-temperature form" refers to the relative temperatures during syntheses.

Fig. 4. (a) Re4*f*_{7/2} and 4*f*_{5/2} core peaks of ReO₃ and CoRe₂O₆ (orthorhombic and tetragonal modifications). (b) XPS valence spectra of orthorhombic and tetragonal CoRe₂O₆ and ReO₃. (c) Re4*f*_{7/2} and 4*f*_{5/2} core peaks of ReO₃ and NiRe₂O₆ (monoclinic and tetragonal modifications). (d) XPS valence spectra of monoclinic and tetragonal NiRe₂O₆ and ReO₃ as external standard. (e) Re4*f*_{7/2} and 4*f*_{5/2} core peaks of ReO₃ and tetragonal tetragonal FeRe₂O₆.

component [26]. In our XPS spectra the 3*d* band of the *M* element must also be taken into consideration, which makes a more specific interpretation of the spectra without theoretical band structure calculations impossible.

3.4. Magnetic properties

The temperature dependences of the inverse specific susceptibility χ_m^{-1} of MRe_2O_6 (M—Fe, Co and Ni) are shown in Fig. 5. Tetragonal FeRe₂O₆ orders antiferromagnetically below T = 123 K in contrast to FeReO₄ [5] with a higher $T_N = 194$ K, in agreement with the higher concentration of Fe-ions in the latter compound. Tetragonal and monoclinic modifications of NiRe₂O₆ order with a ferromagnetic component at ~24 K, whereas both modifications of CoRe₂O₆ show two magnetic transitions at ~17.5 and 27 K for the tetragonal one and at 18 and 67 K for the orthorhombic phase. Field dependences of magnetization for tetragonal $CoRe_2O_6$ and $NiRe_2O_6$ are presented in Fig. 6. The coercivity field strength for the Co-compound is 50 G at 5 K. The pronounced differences between field-up and field-down branches at 5 K at higher field strengths (up to 6 T) is probably due to first-order field-induced transitions into the intermediate magnetic structure, which is stable between 17.5 and 27 K in zero-field. At 21 K, this magnetic structure exists already in zero-field, so that no such transition can be induced and no anomaly is observed in *M*(H) at this temperature. Magnetic moments $\mu_{eff}(exp)$ per formula unit $M_xRe_{1-x}O_2$ are calculated from the Curie constants in the paramagnetic region, obtained from fitting Eq. (1) to the observed data (Table 5).

$$M(T) = \frac{C}{T - \theta} + M_0 \tag{1}$$

Fig. 5. (a) The temperature dependences of the inverse specific susceptibility χ_m^{-1} for the two modifications of CoRe₂O₆. (b) The temperature dependences of the inverse specific susceptibility χ_m^{-1} for the two modifications of NiRe₂O₆. (c) The temperature dependence of the inverse specific susceptibility χ_m^{-1} for the two modifications of NiRe₂O₆. (c) The temperature dependence of the inverse specific susceptibility χ_m^{-1} for the two modifications of PiRe₂O₆.

Note that paramagnetic moments of the low-temperature forms of $M\text{Re}_2\text{O}_6$ are significantly higher than those for the tetragonal forms, which can be connected either with the more itinerant character of d electrons in the tetragonal forms or with a partial charge transfer from *M* to Re and therefore the formation of *M*-ions in a higher oxidation states. The theoretical effective magnetic moments per $M_{0.33}\text{Re}_{0.67}\text{O}_2$ unit, μ_{eff} (cal), were

calculated from the spin only contributions of the 3*d*-ions, distinguished for the low-spin and high-spin states of M^{2+} and M^{3+} , respectively, according to the equation $\mu_{eff}(cal) = g[0.33S(S+1)]^{1/2}$, where *g* is the Landé splitting factor and *S* is the total spin. This simple model is based on delocalized Re electrons, supported by the XPS valence band measurements, which do not give a significant contribution to the paramagnetic

Fig. 6. Field dependence of magnetization for tetragonal CoRe₂O₆ and NiRe₂O₆.

Table 5

Magnetic properties of MRe₂O₆.

Compound	Space group	<i>T_c</i> (K)	$\chi_0 \times 10^6 \; (Gg/emu)$	Θ (K)	Temperature range for fit (K)	$\mu_{\rm eff}({ m exp}) (\mu_{ m B})$
CoRe ₂ O ₆	F222	67, 18	0	-18.9(2)	80-200	2.74(1)
$Co_{1/3}Re_{2/3}O_2$	$P4_2/mnm$	27, 17.5	0	-17.4(5)	25-350	2.06(1)
NiRe ₂ O ₆	C2/m	24	0	-18.5(4)	50-300	2.00(1)
Ni _{1/3} Re _{2/3} O ₂	$P4_2/mnm$	23.5	5.0(2)	-4.1(7)	30-350	1.59(2)
$Fe_{1/3}Re_{2/3}O_2$	$P4_2/mnm$	123 (T _N)	9.1(3)	-2.0(1.5)	160–300	3.06(3)

Magnetic moments are normalized to one formula unit M_x Re_{1-x}O₂. The standard deviations in brackets are determined as the limits, for which an up to 10% higher residual is obtained in the least-square fit than for the optimum fit for Eq. (1). χ_0 was calculated from M_0 in Eq. (1) as $\chi_0 = M_0/(M_x$ H).

Table 6 Spin-only calculated magnetic moments of $M_x \operatorname{Re}_{1-x} O_2(M = \operatorname{Fe}, \operatorname{Co}, \operatorname{Ni})$ for low-spin and high-spin states of M.

Cation	Ground state term	Calculated magnetic moment per $M_{0.33}$ Re _{0.67} O ₂ (μ_B)		
		Low-spin configuration	High-spin configuration	
Fe ²⁺ , d ⁶ Fe ³⁺ , d ⁵ Co ²⁺ , d ⁷ Co ³⁺ , d ⁶ Ni ²⁺ , d ⁸ Ni ³⁺ , d ⁷	${}^{5}D_{4}$ ${}^{6}S_{5/2}$ ${}^{4}F_{9/2}$ ${}^{5}D_{4}$ ${}^{3}F_{4}$ ${}^{4}F_{9/2}$	0.00 1.00 1.00 0.00 0.00 1.00	2.81 3.40 2.22 2.81 1.62 2.22	

moments. The same approximation was previously applied to similar systems, for example $Cr_xMo_{1-x}O_2$ [26]. From this point of view, the experimental paramagnetic moment of orthorhombic $CoRe_2O_6$ (2.74 μ_B) is in a good agreement with the calculated one for high-spin Co^{3+} (2.81 μ_B) and too high for high-spin Co^{2+} $(2.22 \mu_B)$ (Table 6). The measured paramagnetic moment of monoclinic NiRe₂O₆ (2.00 μ_B) is lower than the one calculated for high-spin Ni³⁺ (2.22 μ_B) and⁺, but higher than the one for Ni²⁺ $(1.62 \,\mu_B)$, so that an intermediate electronic state of Ni between Ni²⁺ and Ni³⁺ with electron delocalization might be indicated. The lower magnetic moments in the tetragonal modifications of $CoRe_2O_6$ (2.06 μ_B) and NiRe₂O₆ (1.59 μ_B) may be due to the presence of some amount of high-spin M^{2+} in the compounds, which is indicated by the XPS measurements. The paramagnetic moment of Fe in the tetragonal modification corresponds to the oxidation state of Fe between +2 (high-spin) and +3 (high-spin).

4. Conclusion

Different modifications with rutile-derivated crystal structures of compounds with composition MRe_2O_6 , M—Fe, Co and Ni, can be prepared, controlled by the temperature of synthesis. A random distribution of M and Re on one site results for higher temperatures. These compounds should be labelled as $(M_{1/3}Re_{2/3})O_2$ to distinguish them from the compounds MRe_2O_6 with a partial order of M and Re on distinct sites, obtained at lower temperatures. The symmetry of the crystal structures is reduced by this partial order and metallic Re-Re bonds are formed, accompanied by changes in the electronic configurations of the transition metals.

References

- [1] Ö. Sävborg, Mater. Res. Bull. 11 (1976) 275-280.
- [2] L.A. Klinikova, E.D. Skrebkova, Zh. Neorg. Khimii. 23 (1978) 180-183.
- [3] Ö. Sävborg, M. Nygren, Phys. Stat. Sol. (A) 43 (1977) 645-652.
- [4] K.G. Bramnik, H. Ehrenberg, R. Theissmann, H. Fuess, E. Morán, Z. Kristallogr. 218 (2003) 455–457.
- [5] A.W. Sleight, J. Solid State Chem. 14 (1975) 597–598.
- [6] W.H. Baur, W. Joswig, G. Pieper, D. Kassner, J. Solid State Chem. 99 (1992) 207-211.
- [7] K.G. Bramnik, H. Ehrenberg, S. Buhre, H. Fuess, Acta Cryst. B 61 (2005) 246–249.
- [8] D. Mikhailova, H. Ehrenberg, G. Miehe, D. Trots, C. Hess, R. Schneider, H. Fuess, J. Solid State Chem. 181 (2008) 190–198.
- [9] D. Mikhailova, H. Ehrenberg, H. Fuess, J. Solid State Chem. 179 (2006) 3672–3680.
- [10] G.M. Sheldrick, Acta Crystallogr. A 46 (1990) 467-473.
- [11] G.M. Sheldrick, SHELXL97, Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 1997.
- [12] Stoe & Cie, X-STEP32, 2000, Stoe & Cie GmbH, Darmstadt, Germany.
- [13] M. Knapp, C. Baehtz, H. Ehrenberg, H. Fuess, J. Synchrotron Radiat. 11 (2004) 328–334.

373

- [14] M. Knapp, V. Joco, C. Baehtz, H.H. Brecht, A. Berghaeuser, H. Ehrenberg, H. von Seggern, H. Fuess, Nucl. Instrum. Methods A 521 (2004) 565-570.
- [15] T. Roisnel, J. Rodriguez-Carvajal, Mater. Sci. Forum 378–381 (2001) 118–123.
 [16] J. Galy, G. Miehe, Solid State Sci. 1 (1999) 433–448.
- [17] T.M. Sabine, C.J. Howard, Acta Cryst. B 38 (1982) 701-702.
- [18] D. Mikhailova, submitted to J. Solid State Chem.
- [19] Y. Shimony, L. Ben-Dor, Mater. Res. Bull. 15 (1980) 227-232.
- [20] M. Vlasse, J.-P. Doumerc, P. Peshev, J.-P. Chaminade, M. Pouchard, Rev. Chim. Min. 13 (1976) 451–458.
- [21] G.A. Slack, J. Appl. Phys. 31 (1960) 1571-1582.
- [22] Y. Shimony, L. Ben-Dor, Mater. Res. Bull. 18 (1983) 331-335.
- [23] L. Dahéron, R. Dedryvère, H. Martinez, M. Ménetrier, C. Denage, C. Delmas, D. Conbeau, Chem. Mater. 20 (2008) 583-590. [24] J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray
- Photoelectron Spectroscopy, Physical Electronics, Inc., 1995.
- [25] A. Cimino, B.A. De Angelis, D. Gazzoli, M. Valigi, Z. Anorg. Allg. Chem. 460 (1980) 86-98.
- [26] G.K. Wertheim, L.F. Mattheiss, M. Campagna, Phys. Rev. Lett. 32 (1974) 997-999.